| GANPAT UNIVERSITY | | | | | | | | | | |--------------------------------------|--|----|------------|---|---------|------------------------------|-------------------|-------|-----| | FACULTY OF ENGINEERING & TECHNOLOGY | | | | | | | | | | | Programme Diploma Engineering | | | | | | Branch | Civil Engineering | | | | Semester IV | | | | | Version | ion 1.0.0.0 | | | | | Effective from Academic Year 2019-20 | | | | Effective for the batch Admitted in July 2018 | | | | | | | Subject code 1CI2401 Subject Name | | | | | Name | Mechanics of Structures – II | | | | | Teaching sch | Teaching scheme Examination scheme (Marks) | | | | | | | | | | (Per week) Lecture(DT) Practi | | | ical(Lab.) | Total | | CE | SEE | Total | | | | L | TU | Р | TW | | | | | | | Credit | 3 | 0 | 1 | 0 | 4 | Theory | 40 | 60 | 100 | | Hours | 3 | 0 | 2 | 0 | 5 | Practical | 30 | 20 | 50 | | Pre-requisites: | | |---|--| | Engineering Mechanics (1ES202), Mechanics of Structure – I (1CI 2301) | | ## Course Learning Outcomes: Successful completion of the course shall make student be able to : - CO1. Understand static indeterminacy of structural components. - CO2. Understand behavior of such structural components under certain loading conditions. - CO3. Understand behavior of columns for different end conditions. - CO4. Analyse the structural components for principal stresses. - CO5. Apply the knowledge to real life problems. | Course Content | | | | | | |--------------------------------|--|---|-------|-----|--| | Name of
UNIT | Unit Content | Unit Learning Outcomes | Marks | Hrs | | | UNIT – 1
Fixed Beam | Different types of Determinate & Indeterminate Structures & Structural components/Elements. Advantages of fixed beam over simply supported beam. Concept of analysis by Area Moment method 1.4 μ and μ' diagram. Numerical for SF & BM diagrams for fixed beam with central point load &/or UDL over Full Span. | Draw shear force &
Bending moment
diagram for fixed
beams | 08 | 08 | | | UNIT – 2
Continuous
Beam | 2.1 Statically indeterminate beam like propped cantilever continuous beam with or without over hang define free moment & fixed end moment diagrams. 2.2 Theorem of three moment (clapeyron's theorem). 2.3 Formulae to find B.M of a continuous beam using theorem of three moment method. 2.4 Point of contra flexure & its importance. 2.5 Numerical to draw S.F & B.M diagram for two or three span continuous beams with different loading and support conditions. 2.6 Stiffness, flexibility, carry over factor & distribution factor. 2.7 Moment distribution method. 2.8 Numerical to draw S.F & B.M diagram for two or three span continuous beams with different loading and support conditions. | Draw shear force & Bending moment Diagram for continuous beam using three moment theorem moment distribution method | 15 | 12 | | | UNIT – 3
Principle
Stresses &
Principle
Planes | 3.1
3.2
3.3 | Formulae for Normal , Tangential & Resultant Stresses due to Direct Orthogonal Stresses & Shear Stress. Formulae for Principal Stresses and for Location of Principal Planes. Mohr's Circle and its application. | Calculate principal stresses & principal plane on a plane in a strained structural material. | 15 | 12 | |--|--|--|--|----|----| | UNIT – 4
Analysis Of
Truss | 4.1
4.2
4.3 | Perfect & Imperfect Truss Various trusses for different spans and Application. Analysis of Triangle, North Light & Fan trusses under Panel Point Loads using Graphical & Method of Joint. | Analyse statically Determinate trusses. | 12 | 08 | | UNIT – 5
Column &
Strut | 5.1
5.2
5.3
5.4
5.5
5.6 | Column & Strut Short & Long Column End Condition of Column and effective Length of Column & Modes of Failure in column Radius of Gyration, Slenderness Ratio Euler's Crippling Load Rankin's load / Buckling Load of Column. | Calculate load carrying capacity of columns & struts. | 10 | 05 | | | | | Total | 60 | 45 | | List of | List of Practical | | | | | |---------|-------------------|---|--|--|--| | No. | Unit | Name of Practical | | | | | 1 | ALL | Solve at least six problems based on every unit. | | | | | 2 | 4 | Analyse truss using graphical method (at least three trusses) and verify using analytical method. | | | | | 3 | 5 | Demonstrate End Conditions of Column using suitable model / example. | | | | | List of Instruments / Equipment / Trainer Board | | | | |---|---|--|--| | 1 | Model for column with different end conditions. | | | | | | | | | List of | List of Reference Books | | | | | |---------|--------------------------|---|--|--|--| | No | Title of Reference Books | Authors | Publication | | | | 1 | Strength of Materials | R S Khurmi, N. Khurmi | S Chand Publications | | | | 2 | Strength of Materials | S Ramamrutham | Dhanpat Rai Publishing Company(P) Ltd. | | | | 3 | Strength of Materials | Dr. B. C. Punamia, Er. Ashokkumar
Jain Dr. Arun Kumar Jain | Laxmi Publications | | | | | Link of Learning Web Resource | | | | |--|-------------------------------|--|--|--| | 1 https://www.coursera.org/learn/mechanics-1 | | https://www.coursera.org/learn/mechanics-1 | | | | Ī | 2 | https://nptel.ac.in/courses/106106108 | | |